HiJack “Hello world!” Project

HiJack is a hardware device that plugs
right into your iPhone/iPad headphone
jack. The current HiJack firmware
supports an 8 bit A-D converter that
takes an input of 0-2.75 volts. In this
article, we’ll look at how to hook up the
HiJack hardware and write a simple
program to access data.

In the programming world, it's been
tradition to start off with a new
computer language by writing a simple
program that prints “Hello world!” This
started with Brian Kerninghan, who
wrote the first hello world program in a
tutorial for the B programming language
in 1972. With nearly 40 years of
tradition behind us, we'll start our
exploration of the HiJack hardware with
a simple program to read the data, and a
simple hardware project to provide that
data--hello world, hardware style. We'll
call our program Hello HiJack.

One of the challenging things about interfacing hardware to a computer is that it
involves at least two distinct disciplines, electrical engineering and programming. If
you are reading this article, you're probably at least conversant with one of these
fields, but very few people are expert in both. Because of that, I'll provide a lot more
background in programming than the programmers need, and more background in
electronics than the electrical engineers need. I'm sure you're good at skimming by
now, so feel free to skip over the sections you already know well.

Building the Sensor

Let’s start with the hardware itself. HiJack was developed at the University of
Michigan for creating cubic-inch sensor peripherals for mobile phones like the
iPhone. It works just as well from the iPad. The whole idea is to give you a hardware
platform that you can build on to. You can buy the hardware from Seeed Studio,
which sells the raw hardware, a development pack, and a few odd components. I got
the development pack, shown on the next page. It comes with the actual HiJack
device, which is the green board with the headphone connection, along with a few

other goodies. The most important
extra is the board with the USB plug;
this is used to download new
firmware as it becomes available. Be
warned, though: The software to
install firmware on the HiJack board
only runs on Windows, and is fairly
temperamental. The two blue boards
are prototyping boards that are
designed to plug snugly into the
HiJack board. The various wiring
harnesses are used to connect the
prototyping boards to other devices,
notably the prebuilt sensors in the GROVE modular toolset. The GROVE components
include a collection of sensors, some of which work with HiJack right out of the box.

With a HiJack board in hand, the first thing we need to do is build a sensor. Ours will
be about as simple as they come: We'll use a potentiometer (variable resistor) to
provide a voltage we can change by varying the resistance. You can pick up
potentiometers from pretty much anyplace that sells electronics components. The
specific resistance doesn’t matter, either. I used a tiny little 10K (10,000 ohm) trim
pot I had laying around in a parts bin.

The idea behind this sensor is to divide the voltage supplied by the HiJack device.
Resistors in series divide an input voltage. Here’s a diagram of the circuit we’ll be
building. Purists will notice that I showed two separate resistors rather than a
potentiometer. Electrically they are the same thing as long as the potentiometer is
not being adjusted, though, and it makes the following discussion a little easier.

Voltage Out

+2.75V

R R

1 2

The three lines forming the triangle at the left is the ground connection, abbreviated
GND on the Seeed Studio documentation. This is the negative voltage side of the
circuit. The other side, marked +2.75V, is the positive power supplied by the HiJack

device. This pin is marked VCC on the Seeed Studio documentation. Our circuit will
connect up to these two pins to draw power across the potentiometer.

Now a potentiometer is essentially, and sometimes literally, a resistive bar that uses
a slider of some sort that slides over the resistor. The bar is connected to a third
wire. Sliding the bar changes the resistance to either side, dividing the resistance in
two parts that always add up to the total resistance in the device. The voltage output
from the ground connection to the center wire of the resistor will be

V =V *L
out in Rl +R2

where Vin is the 2.75 volts supplied by HiJack, and R1 and R2 vary as you adjust the
potentiometer. Anything that detects the voltage from the ground connection to
Voltage Out will see the voltage vary from 0 to 2.75 volts as the potentiometer is
turned. That’s exactly what the HiJack hardware will measure.

On the other end of the circuit sits the HiJack device itself. The top of the HiJack
device has three female headers that provide 10 wiring connections each. Here’s the
pinout, from a larger diagram available at the Seeed Studio site:

I
|

The connections we're interested in are on the right bar. We’ve already talked about
GND and VCC; those pins provide the 2.75 volt power source we are using. The data
input line is A6/DACO. That's the pin we need to connect to the center pole on the
potentiometer. Following the convention of black wires for ground and red for

positive in DC circuits, and using a brown wire because I had one handy in my parts
box, here’s a closeup of the connections on the HiJack device.

Potentiometers have three pins. In general, the center pin is the one we want to
hook up to A6/DACO, and GND and VCC can be connected to either of the two
remaining pins. Here’s what it looks like in my circuit, with a second, identical
potentiometer upside down beside the one I used so you can see the pins coming
out of the bottom. I used a breadboard for the connections, but that’s because I had
one laying around. Anything that will securely mount the wires to the potentiometer
and let you easily adjust the resistance will work just fine.

The Hello HiJack Program

With all of that hooked up, it’s time to write a program to show what’s happening.
Run techBASIC from your iPhone or iPad, tap the New button to create a new
program, and enter Hello HiJack as the program name. Tap the Source screen to get
the keyboard and enter this program. The letter case doesn’t matter, but I've used
uppercase for BASIC keywords and for the first letter of class names to make it
easier for you to read the program.

WHILE 1
System.clearConsole
PRINT HiJack.receive
System.wait(0.5)

WEND

The waiLE and weND lines form a loop that will loop as long as the expression on the
WHILE statement is non-zero. 1 will be non-zero for a really long time, so the loop
will go forever. The only way to stop this program will be to press the Stop button
that will show up at the top of the screen when the program starts running.

System.clearConsole clears any text from the console, where text input and output
appear.

The PRINT statement then prints a two-dimensional array to the screen. It gets that
array from the HiJack hardware-HigJack.receive is a function that returns an array
where the first element is a value between 0 and 255, with lower numbers when the
voltage is low and higher numbers when it is high, and a second value that is a time
stamp. The time stamp may not seem to change much, but it’s a large number whose
most significant digits change slowly.

System.wait (0.5) pauses for a moment so we get a chance to read the screen
without too much flicker. The parameter tells the call how long to pause, in this case
for 1/2 of a second.

After typing in the program, plug the HiJack hardware into the headphone jack on
your iPhone. Tap the Programs button at the bottom of the screen, then tap the
name of the program (not the round blue disclosure button to the right, the actual
name) to run the program. techBASIC will change the display to the Console, where
you should see a number that occasionally changes. After a second or two it will
settle down to a single number, or perhaps flick back and forth between two values.
Adjust the potentiometer, and you’ll see the number change. Just a few more steps,
and you’ll be building Robo Cop!

When Things Go Wrong

OK, not so fast. Did it work? If not, there are two places for things to go wrong: the
software or the hardware.

If there is a problem with the software, techBASIC will say so. Check to make sure
the program is exactly the one typed above. Letter case is not important, but spaces
and line breaks can be. Make sure there are five lines, and that there are spaces
between the words where shown, and no spaces inserted. clear Console is not the
same as clearConsole! Also, look at the error messages from techBASIC. They will
usually pinpoint the problem, and even if they don’t, the real problem will be close

by.

If the program is running and printing numbers, but the numbers seems to jump
around randomly, you probably don’t have a good connection. Check to make sure
the HiJack hardware is plugged all the way into the headphone port. The metal disk
on the washer does not fit flush against the case, so don’t push too hard. If you are
using an iPod Touch, you may also need to twist the jack around a bit.

The last source of trouble is the HiJack hardware or the circuit. Check it all carefully
to make sure the right wires are connected to the right places, and that the wires are
making a good electrical contact.

A Better Program

While that first little program worked, it's not =~ = AT&T = 9:14 AM 99 % ol

the most exiting program in the world. HiJack Raw Data y2
Wouldn't it be nicer to have something like an
oscilloscope trace, like you get from the

techBASIC Magnetometer sample? It’s actually N N O
not that hard. In fact, let’s do that now.

250

200
-

Our goal is a program that plots results like
those to the right. We'll plot 10 seconds worth
of data, collecting a data point every 0.1
seconds, for a total of 100 data points plotted | (
at any one time. The newest data will always |' ". .’| \
appear at the right, at time=0, and older data 8 | : l'. }
will be scrolled to the left, with time getting | } \/
more and more negative until the point falls off o\
of the display.

Value Read
150

100
———
-

Let’s start with the finished program and pick
it apart. I'll show the complete program first,
then we’ll walk through it line by line. The
program is also available for download at the end of this article, so don’t type itin

unless you just want the practice.

[,_/

Graphics

Shows a running plot of HiJack
input for the last 10 seconds
in 0.1 second intervals.

Initialize the display with the
value set to 0.
DIM value(100, 2)
FOR t = 1 TO 100

value(t, 1) = (t - 100)/10.0
NEXT

Initialize the plot and show

it.

DIM p as Plot, ph as PlotPoint

p = Graphics.newPlot
p.setTitle("HiJack Raw Data")
p.setXAxisLabel ("Time in Seconds")
p.setYAxisLabel("Value Read")
p.showGrid(1)

p.setGridColor (0.8, 0.8, 0.8)

ph = p.newPlot(value)
ph.setColor(1l, 0, 0)
ph.setPointColor(1l, 0, 0)

! Set the plot range and

! domain. This must be done

! after adding the first

! PlotPoint, since that also
! sets the range and domain.
p.setvView(-10, 0, 0, 255, 0)

system.showGraphics

! Loop continuously, collecting
! HiJack data and updating the
! plot.
DIM time AS double
time = System.ticks - 10.0
WHILE 1
! Wait for 0.1 seconds to
! elapse.
WHILE System.ticks < time + 10.1
WEND
time = time + 0.1

! Get and plot one data point.
h = HiJack.receive
FOR i = 1 TO 99

value(i, 2) = value(i + 1, 2)
NEXT
value (100, 2) = h(1l)

ph.setPoints(value)
Graphics.repaint
WEND

OK, that’s not too long, as programs go. It’s just 55 lines, and a lot of them are
comments. Let’s see what it does. Here’s the first chunk.

! Shows a running plot of HiJack
! input for the last 10 seconds

! in 0.1 second intervals.
!
!

Initialize the display with the
! value set to 0.
DIM value(100, 2)
FOR t = 1 TO 100

value(t, 1) = (t - 100)/10.0
NEXT

This first chunk of code has come introductory comments, then sets up an array to
hold the values we will eventually read from the HiJack hardware. techBASIC won’t
care if you leave out the comments (the lines starting with a ! character), but
commenting your code is a good habit. The array value will hold up to 100 values.
It's a two-dimensional array because we will need to tell techBASIC both the X and Y
values for each point to plot. The X values are the timeline, which doesn’t change, so
we use a For loop to fill in the X values. Our intent is to collect one point every 0.1
seconds, and display 10 seconds worth of data, so we fill in the X values with values
ranging from -9.9 to 0. We can safely leave the Y values unchanged, since BASIC
initialized new variables to 0, and that will work fine for our purpose.

! Initialize the plot and show
!it.
DIM p as Plot, ph as PlotPoint

Next we need to create a plot. The p1mM statement sets up two variables, one to hold
the plot class that displays the plot itself, and another for the P1otPoint class,
which contains the actual points to plot. Why didn’t techBASIC do this in one step?
Well, the Magnetometer sample that comes with techBASIC is a good example that
shows why not. It plots three lines on a single display, one each for the X, Y and Z
directions. That sample still just has one p1ot class, since we want all of the lines to
show up on a single plot, but there are three plotproint classes, one for each axis.
You can add as many lines as you like to a techBASIC plot.

= Graphics.newPlot
.setTitle("HiJack Raw Data")
.setXAxisLabel("Time in Seconds")
.setYAxisLabel("Value Read")
.showGrid (1)

.setGridColor (0.8, 0.8, 0.8)

‘oo ‘oo oo

The first line creates the plot itself. Think of this as the background, including the
titles, axis, and so forth. The setTitle method sets the title at the top of the plot,
while the next two lines set the axis labels. showGrid turns one the grid lines that
appear behind the plot line; without this call, the background is blank. Finally, we
set the grid color to a light gray. Like almost all techBASIC calls that take a color,

setGridcolor takes three parameters, one each for the intensity of the red, green
and blue colors, in that order. The valid values are 0.0 to 1.0, with 0.0 being black,
and 1.0 being the full intensity for that color. A few calls have a fourth number for
the alpha channel, which tells how transparent a color is. That lets you draw
something over a background and, to the degree specified by the alpha value, see
through the new color to whatever lies behind it. Check out this Wikipedia article if
you would like to know more about how RGB color works on a computer.
(http://en.wikipedia.org/wiki/RGB_color_model)

ph = p.newPlot(value)
ph.setColor(1l, 0, 0)
ph.setPointColor(1l, 0, 0)

The next step is to set up the plotPoint class that actually draws the line across the
plot. The newPlot method creates a new instance of the class and adds it to the p1ot
we just created. We then set the color for both the line and the points where the data
is actually plotted to red. There are other calls in the P1lotPoint class that control
the shape of the points and line; you can use those to customize your version of the
program.

! Set the plot range and
! domain. This must be done
! after adding the first
! PlotPoint, since that also
! sets the range and domain.
p.setvView(-10, 0, 0, 255, 0)

HiJack always returns a value from 0 to 255, and we know the X axis will show times
from -10 to 0 seconds, so we set the axis to show exactly those values. Without this
call, techBASIC will default to showing 0 to 10 along the X axis and roughly -5 to 5
along the Y axis. We can always change what we are looking at with some swipe and
pinch gestures, but this saves us the trouble.

system.showGraphics

Now that things are set up, we tell techBASIC to switch to the Graphics display.
Again, we could have done this with a tap on the Graphics button, but this saves us
the trouble.

! Loop continuously, collecting
! HiJack data and updating the
! plot.

DIM time AS double

time = System.ticks - 10.0

HiJack can report data at various rates up to a little more than 100 points per
second. The default rate in techBASIC is about 40 values per second, which is more
than we need. These lines set up a time stamp we will use to tell when 0.1 seconds

has elapsed. Each time that happens, we’ll grab a new point from the HiJack
hardware and add it to our plot.

WHILE 1

Just like the first program, this program will loop until you manually stop it with the
Stop button.

! Wait for 0.1 seconds to

! elapse.

WHILE System.ticks < time + 10.1
WEND

time = time + 0.1

Here is where we wait for 0.1 seconds to elapse. The waILE loop waits until the
system clock reports a time 10.1 seconds past the original time we recorded before
the loop started. We then add 0.1 to this time so the next time through, this timer
loop will wait until 10.2 seconds have gone by, and so forth.

! Get and plot one data point.
h = HiJack.receive

This is all it takes to actually read the HiJack hardware. A value from 0 to 255 is
stuffed into the variable h.

FOR i = 1 TO 99
value(i, 2) = value(i + 1, 2)
NEXT

This loop shifts the 99 most recent points in the value array one index lower, which
will cause them to be drawn one point to the left on the plot. Remember, the time is
preset, and is not being shifted, so this essentially makes each point 0.1 seconds
older on the plot. The first time through, this is just copying a bunch of zeros, but
after 10 seconds, all of the values are older values read from the HiJack hardware.

value (100, 2) = h(1l)

The new point goes in the last spot in the plot. We pull off the first element of the
array, which is the HiJack data, and ignore the second, which contains a time stamp
we don’t need in this program.

ph.setPoints(value)
Graphics.repaint

This tells the P1otPoint object we create and stored in ph to use a new set of points.
Next we repaint the graphics screen, showing the new information on the plot.

WEND

Finally, we go back to the wHILE statement and do it all again.

Try out the finished program with HiJack. You should be able to see exactly where
the potentiometer is set, and watch the change as you adjust it. This program will
work with all of your HiJack projects, although you will probably develop custom
programs for specific sensors and uses. Be sure and drop me a line. I'd love to hear
about the things you build with HiJack and techBASIC!

For More Information

Find out more about the HiJack project at the University of Michigan’s HiJack page
(http://eecs.umich.edu/~prabal/projects/hijack/) and at the wiki on the Seeed
Studio site. (http://www.seeedstudio.com/wiki/index.php?title=Hijack) The wiki
also has information about other hardware projects you can build, downloads for
the software to update the firmware on the HiJack, and the latest version of the
firmware.

You can buy the HiJack hardware from Seeed Studio.
(http://www.seeedstudio.com/depot/) Here’s a direct link to the development
bundle I used. (http://www.seeedstudio.com/depot/hijack-development-pack-p-
865.html?cPath=174)

You can find out more about techBASIC on the techBASIC web page. This page also
has downloads for the techBASIC reference manual.
(http://www.byteworks.us/Byte_Works/techBASIC.html)

techBASIC is available from the app store.
(http://itunes.apple.com/us/app/techbasic/id4707818627mt=8)

Available on the
D App Store

And finally, here is the program presented in this article. You can download it to
your computer and move it to techBASIC using iTunes. The Quick Start guides will
step you through the process of moving files between your computer and your
iPhone. The Quick Start guides are available at the bottom of the techBASIC page.
(http://www.byteworks.us/Byte_Works/Blog/Entries/2011/12/7_HiJack_Hello_w
orld!_Project_files/HiJack.bas)

Copyright 2011, Byte Works, Inc. All Rights Reserved.

